MXenes as Photocatalytic Materials for Water Splitting

Diego Ontiveros, Francesc Viñes, Carme Sousa

Institut de Química Teòrica i Computacional (IQTCUB), Departament de Ciència de Materials i Química Física, Universitat de Barcelona.

OBJECTIVES Q

Modify and design the bandgap of MXenes composition (M, X, T), width (n), stacking and termination position, to find potential photoactive candidates for water splitting using solar light.

Density of States

- 6 different structures for each terminated MXene are considered (2376 in total).
- Group III and IV MXenes with $n = 1 \rightarrow$ large bandgaps, in the visible region.
- The most promising cases for being photoactive materials with sunlight.
- C-MXenes \rightarrow more semiconducting cases and larger bandgaps than N-MXenes.
- Pristine MXenes \rightarrow metallic properties (not photoactive).
- MXenes $n = 2, 3 \rightarrow$ Increasing the amount of "bulk" tends to make them metallic.

Band Alignment

The band alignment with respect to the half-reaction potentials has been studied for the most promising photoactive cases ($E_g > 1.23 \text{ eV}$).

- The ideal cases will be those that, in addition to having a suitable band alignment, are the most stable structure among the six considered.
- Several structures from Groups III and IV exhibit correct alignments.
- The cases of Zr₂CO₂, Sc₂CCl₂, Y₂CCl₂, Sc₂CS₂, and Y₂CS₂ fulfill these optimal conditions, which allows us to propose them as potential candidates for the photocatalytic water splitting.
- These systems exhibit an indirect bandgap and a significant charge density separation between the valence band maximum and conduction band minimum (VBM and CBM), promoting the separation of generated charges.

CONCLUSIONS \checkmark

Based on DFT calculations, MXenes with n = 1, X = C, M = Groups III and IV, and T = O, S, Cl, especially Zr_2CO_2 , Sc_2CCl_2 , Y_2CCl_2 , Sc_2CS_2 , and Y_2CS_2 , exhibit a visible range bandgap, optimal for solar light absorption, and band edges that exceed the half-reaction potentials of water splitting, suitable for photocatalysing the process and generating green H_2 .

REFERENCES

[1] Adv. Mater. 2011, 23, 4248–4253. [2] Adv. Funct. Mater. 2013, 23, 2185–2192. [3] J. Mater. Chem. A 2016, 4, 11446–11452.

Model: Marchaeler Marchaeler

