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ABSTRACT: The increasing demand for clean and renewable energy
has intensified the exploration of advanced materials for efficient
photocatalysis, particularly for water splitting applications. Among
these materials, MXenes, a family of two-dimensional (2D) transition
metal carbides and nitrides, have shown great promise. This study
leverages machine learning (ML) to address the resource-intensive
process of predicting the bandgap of MXenes, which is critical for their
photocatalytic performance. Using an extensive data set of 4356
MZXene structures, we trained multiple ML models and developed a
robust classifier-regressor pipeline that achieves a classification
accuracy of 92% and a mean absolute error (MAE) of 0.17 eV for
bandgap prediction. This framework, implemented in an open-source

» Results: MA

Python package, MXgap, has been applied to screen 396 La-based
MXenes, identifying six promising candidates with suitable band alignments for water splitting whose optical properties were further
explored via optical absorption and solar-to-hydrogen (STH) efficiency. These findings demonstrate the potential of ML to
accelerate MXene discovery and optimization for energy applications.

KEYWORDS: MXenes, machine learning, water splitting, density functional theory, photocatalysis

1. INTRODUCTION

As global energy demands continue to rise, the quest for clean,
sustainable, and efficient energy sources has become
increasingly urgent, driving extensive research into advanced
materials for energy conversion and storage applications.1
Among these applications, photocatalysis has emerged as a
critical process, enabling the direct conversion of solar energy
—a renewable and widely available energy resource— into
chemical energy to trigger reactions that can produce clean
fuels and/or mitigate greenhouse gases.”” One of the most
notable photocatalytic reactions is water splitting, in which
sunlight is used to decompose water (H,0O) into hydrogen
(H,) and oxygen (O,). H, generated via this process serves as
a clean and efficient energy carrier that can be used as a
potential carbon-free fuel.” The water splitting reaction relies
on the availability of H,O, an abundant and renewable
resource, making it a highly sustainable process with significant
potential for large-scale adoption. Beyond water splitting,
photocatalysis is also gaining traction for other essential
reactions, such as carbon dioxide (CO,) reduction, where
photocatalysis can help reduce atmospheric CO,, a primary
greenhouse gas, by converting it into valuable chemicals and
fuels like methane, methanol, and carbon monoxide.’
However, efficient photocatalytic reactions require materials
that can effectively absorb visible sunlight and facilitate the
necessary redox reactions, with specific electronic properties
such as an optimal bandgap for solar light absorption.’
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Here, we focus on MXenes,” a broad family of few-layered
two-dimensional (2D) materials that have shown significant
promise as photoactive materials. These are transition metal
(TM) carbides and nitrides with M,,;X, chemical formula,
where M stands for an early TM from groups III to VI —i.e.
Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W—, X can be carbon
or nitrogen, and n = 1-45710 Moreover, MXenes can have
their surface easily functionalized with a termination, T,, thus
updating the general chemical formula to M,,, X, T,. The usual
synthesis of MXenes involves selectively etching A elements
from bulk layered MAX materials precursors, M,,,;AX,, where
A is typically a p-group element.'' The etching process is
commonly carried out using hydrofluoric acid (HF),"> which
produces terminations such as —O, —F, —OH, and —H."”
Nevertheless, recent studies employing molten salts reported
new MXenes terminated with —S, —Se, —Te, —NH, —Cl, —Br,
and —I, resultin$ in a large family that encompasses thousands
of compounds.'¥'> MXenes are known for their tunable
electronic properties, large surface area, and structural
stability.'® These unique attributes have positioned MXenes
at the front of global research,'” with applications spanning
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Figure 1. MXene composition and structure. (a) Periodic table showing the building blocks of MXenes, with the M, X, and T atoms colored in
gray, blue, and red, respectively. (b) Side view of the ABA (left) and ABC (right) stackings for pristine MXenes. (c) Side views of the six possible
configurations for a terminated MXene, depending on the stacking (ABC or ABA) and the termination position (Hy/H, Hyy, or Hy).

energy storage and electronics, where they excel in super-
capacitors and batteries,'® to environmental applications such
as water puriﬁcation19 and CO, capture and utilization.”® The
ability to tailor the electronic structure of MXenes via their
structure, composition, or surface termination unlocks exciting
possil)lilzigies for enhancing their photocatalytic perform-

A key feature in this context is the material bandgap, E,,
directly affecting its ablhty to absorb sunlight and drive
photochemical reactions.” However, determining the bandgap
and other properties often relies on resource-intensive
approaches, such as direct experimental measurements or
computational estimates employing density functional theory
(DFT) simulations using hybrid functionals or advanced
methods like those based on Green functions and screened
Coulomb interactions (GW). Although these methods are
highly accurate, they can become prohibitively expensive and
time-consuming when applied across the vast design space of
possible MXene compositions and structures, especially as this
family of compounds continues to expand.”’ There machine
learning (ML) can be a transformative tool in materials
science, leveraging vast data sets to identify patterns and make
fast predictions.”* ML methods have already been successfully
applied to predict a wide range of properties at different scales,
including potential energies, crystal structures, electronic
conductivities, and thermal stabilities.” They are also making
significant impacts across diverse fields, such as catalysis,
surface science, environmental chemistry, biomaterials, and
many others.”*”” In the context of MXenes, ML has also been
applied to explore thelr thermodynamic stability,”® identifying
new stable MXenes” and predicting electronic properties such
as work functions and HER catalytic activities. 3031 However,
ML applications for MXenes electronic properties are still
limited, with only few studies dedicated to predict their
bandgaps or their bands alignments.””*® Moreover, these
existing studies primarily relied on traditional ML models, not
providing readily accessible tools for further research or
practical applications.

Here, we developed a new ML tool to predict the bandgap
of MXene compounds, aiming to accelerate the discovery of
MXenes that can act as efficient photocatalysts, illustrated here
with water splitting, although of potential use in any

phototriggered process. By using our })rewously published
data on MXene electronic propertles, 122 \ve trained several
ML models and developed an optimal model combining a ML
classifier with a ML regressor. This model classifies each
MXene as metallic or semiconducting with 92% accuracy and
predicts the bandgap with a mean absolute error (MAE) of
0.17 eV. Unlike previous studies, our work systematically
evaluates a broad range of models, including advanced tree
ensemble methods, leading to improved predictive perform-
ance. Furthermore, we ensure that our results are also widely
accessible by integrating these models into MXgap, a free and
open-source Python package. Finally, to validate the tool, we
screened 396 novel La-based MXenes and successfully
identified six candidates with suitable band alignment for
water splitting applications. These candidates were further
validated by PBEO computations and examined by optical
absorption spectra and solar-to-hydrogen (STH) efficiency.
The developed ML tool not only allows for discovering new
photoactive MXenes but also for rapidly screening other
bandgap-dependent properties of MXenes, such as those
relevant to solar cells and photovoltaic applications.*

2. METHODS

2.1. Structural Models. Pristine MXene structures, with
the M,, X, chemical formula, consist of intercalated close-
packed layers of M and X atoms, with the number of layers
determined by the value of n. Two stacking arrangements are
possible: ABC stacking, with the M layers in two different
relative positions, or ABA stacking, with the M layers aligned in
the same position along the vacuum direction; see Figure 1b.
For terminated MXenes, M,, X, T,, the T atoms can be added
into different surface hollow sites of the pristine MXene
structures, as indicated in Figure 1c. The explored sites are the
metal hollow in ABC stacking, Hy, located above an
underlying metal atom, the simple hollow in ABA stacking,
H, placed with no atoms underneath, the carbon or nitrogen
hollows, Hy, with an underlying X atom for both stackings, and
a mixture of Hy; (H) and Hy on opposite MXene surfaces for
ABC (ABA) stacking, Hyx. Combining stacking and hollow
sites yields six possible configurations for each terminated
MXene. These structures were modeled using a p(1x1)
hexagonal unit cell, represented as a slab model with 30 A of
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vacuum perpendicular to the MXene 2D surface. The
structures used in this study are derived from a previous
high-throughput computational screening aimed at assessing
MXenes for photocatalytic water splitting.”"*

2.2. Data set and Model Training. The data set used for
model training is a collection of the structural and electronic
properties of 4356 different MXene structures, considering the
geometries and compositions represented in Figure la —i.e. M
=S¢, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, or W; X =Cor N; T =
F, Cl, Br, I, O, S, Se, Te, H, OH, NH; n = 1-3; and six
geometries for each MXene. These selected compositions are
based on those present in already synthesized MXenes.'>*
Each structure was characterized by a set of elemental,
structural, and electronic features, detailed in Table S1 of the
Supporting Information (SI). For model selection, a 60/20/20
train/validation/test split strategy was employed, using MAE
and R metrics for performance evaluation in the regression
tasks and the accuracy, precision, recall, and receiver operating
characteristic (ROC) curve for classification. More information
about the training and evaluation metrics can be found in the
corresponding Section S1 and Figure S1 of the SI. During the
training phase, data was randomly divided, reserving the test
set for the final evaluation. A five-fold cross-validated grid
search was then conducted to determine the optimal
hyperparameters for each model. The best set of hyper-
parameters —i.e.,, those that showed the highest validation
score— were then used to train the final model, with the full
training set, which was subsequently evaluated on the test set
to ensure robust predictive performance. Six different ML
algorithms were trained with the MXene data: Gradient
boosting (GB), random forest (RF), support vector machine
(SV), and multilayer perceptron (MLP) classifiers and
regressors, plus logistic regression (LR) and kernel ridge
regressor (KRR). Thus, the GB, RF, SV, and MLP models
were trained for both classification of MXenes into metallic or
semiconductor and regression to predict the bandgap, while
LR was exclusively used for classification, as it cannot handle
regression tasks, whereas KRR was used only for bandgap
prediction. These ML algorithms are executed using the
extensively adopted open-source Scikit-Learn library®® and are
further explained in Section S2 of the SL

2.3. DFT Methods. The electronic structure of the MXenes
studied was analyzed within the framework of DFT,*”** with
calculations conducted through the Vienna ab initio simulation
package (VASP).” In these calculations, core electrons and
their interactions with valence electrons were represented by
projector augmented wave (PAW) pseudopotentials,”’ and
valence electrons were described with a plane-wave basis set,
employing a 415 eV kinetic energy cutoff and considering spin-
polarization. The Perdew—Burke—Ernzerhof (PBE)"' ex-
change—correlation functional was utilized under the general-
ized gradient approximation (GGA).*” Additionally, for a more
accurate estimation of the bandgap and electronic structure,
calculations incorporating the PBEO hybrid functional,”* which
includes 25% nonlocal Fock exchange, were carried out.
Geometry optimizations were considered converged when the
forces on nuclei were below 0.01 eV-A™!, with a 107 eV
threshold set for electronic convergence. During optimization,
atomic positions and cell parameters were allowed to relax. For
Brillouin zone integration, optimal I'-centered 7X7X1
Monkhorst—Pack k-point grids were applied.**

To study the ability to harness sunlight of the promising
cases resulting from the ML screening, the absorption

coefficient a(w) was computed and estimated with the
following formula

a(w) = PO + &¥w) —q@]
c

where ¢ is the speed of light, and €, and ¢; are the real and
imaginary parts of the dielectric function, respectively. To
accurately compute the dielectric function and the optical
absorption spectra, the GW-BSE approach was employed,
which combines the many-body perturbation Green’s function
and screened Coulombic interaction (GW)** with the Bethe—
Salpeter Equation (BSE),*® which accounts for electron—
electron and electron—hole interactions. An optimal plane-
wave energy cutoff of 200 eV was found, together with 960
bands for the GW calculations, while eight occupied and 16
unoccupied bands were selected to describe the excitons in the
BSE calculations. All the calculations were performed using a
converged 13X13X1 Monkhorst—Pack k-point grid.

The STH efficiency has also been estimated, which is a key
parameter for evaluating the efficiency of converting solar light
into hydrogen fuel. Here, one computes the upper limit of the
STH, as based on a previous work,"” assuming 100% efficiency
of the catalytic reactions. The STH can be decomposed into
light absorption, 7,,, and carrier utilization, 7, efficiencies,
which take the form of the following equations

foo P(w)dw
Eopt
']abs = 0
/00 P(m)dw
Moy = AG—/EOO ( )
P(w)dw
Eyp 3)

where P(w)is the air mass at 1.5 atm thickness global
(AML.5G) solar energy flux at photon energy,”® AG is the
water redox potential difference of 1.23 eV, and E is the
photon energy that can be actually utilized for water splitting.
Considering the existing barriers for the hydrogen evolution
reaction (HER) and oxygen evolution reaction (OER), extra
energy is demanded to overcome those barriers, which should
be added in E. According to the previous reports, considering
the overpotentials of OER and HER cocatalysts and the energy
loss during carriers migration between materials, suitable
overpotentials of 0.2 and 0.6 V are assumed for the HER and
OER, respectively.””**>° Thus, the E value can be expressed as

Eqp if gy, > 02andy, > 0.6
Egpe + 02 — X, if)(H <02andy, =0.6
2 2
E =
Eyp + 0.6 — Xo, if)(H2 > 0.2 and)(o2 < 0.6

Eope + 08 = 244, = Xo,if)y < 02andy, <06

(4)
where yy; and g are the overpotentials for the HER and OER,
respectively, computed as the difference between the band
edge (the valence band maximum, VBM, or the conduction
band minimum, CBM) and the corresponding redox half
reaction potential. With both of these contributions, the STH
efficiency is defined as

’]STH = nabs'ncu (5)
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Figure 2. Machine learning workflow. From a database comprised of 4356 terminated MXenes, a set of features are selected to describe the
MZXenes. The data is split into a train set, used to train the ML model after the optimal hyperparameters are selected, and a test set, used to evaluate

the model performance.
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Figure 3. Approaches for bandgap prediction (a) RFR prediction using the full database, including all metallic and semiconductor MXenes,
showing the ML predicted bandgap, EX' o L, vs. the PBEO bandgap, EPBEO both shown in eV. (b) GBR bandgap prediction by separately estimating the
VBM and CBM (top) and extracting the bandgap as the dlfference between the band edges. (c) A two-step approach: first, the GBC groups
MXenes as either metallic (m) or semiconductor (s). For those predicted as semiconductors, a separate regression model is used to estimate their
bandgap. The resulting correlation plot from combining both steps is shown at the bottom. Results in all cases are based on the test data set

evaluation.

For Janus structures, with a difference between vacuum
levels of the two surfaces, A¢, like for S-, Se-, and Te-
terminated MXenes, the intrinsic electric field does positive
work for the separation of photon excited electrons and holes
during the processing of photocatalytic water splitting, and
therefore, it should be added into the total energy. Hence, the
corrected STH efficiency of photocatalytic water splitting for
2D materials with intrinsic electric field, #gpy, is defined as

fo *P(w)dw
0 P(w)
P(w)dw + A¢ /E D dw

Msrn = flsra /oo
0 (6)

3. RESULTS AND DISCUSSION

The primary goal here is to efficiently predict the semi-
conducting properties of MXenes with minimal effort using
ML models while incorporating essential physical insights.
Thus, at the beginning, only periodic table values —i.e. atomic
numbers, electronegativity, atomic radius, etc.— and structural
information extracted from PBE periodic optimization
calculations —i.e. lattice parameter and MXene widths,
bonds distances, termination adsorption sites, efc.— were
used, hereafter referred to as elemental features. Nonetheless,
to improve the predictions, supplementary features gained
from PBE density of states (DOS) were added —mainly the
PBE bandgap, bandgap edges, and averaged DOS— hereafter
referred to as DOS features. After performing a feature

14406

selection via evaluating the feature importance based on the
random forest regression (RFR) model, 33 elemental features
and 103 DOS features were kept, which are found in Table S1
of the SI. Thus, the database comprises these selected features
alongside the target property, the PBEO bandgap, which
provides a more accurate approximation of the real bandgap,
for a total of 4356 MXene structures. From this database, the
model training and testing followed the workflow shown in
Figure 2. For more comprehensive details on the database and
training procedures, refer to the corresponding Methods
section.

3.1. Bandgap Prediction with the Full Database. First,
the full database was used, containing both metallic and
semiconductor MXenes, in order to directly predict the
bandgap of MXene structures. To choose the suitable ML
algorithm, several models were evaluated for the regression,
including gradient boosting regressor (GBR), random forest
regressor (RFR), support vector regressor (SVR), multilayer
perceptron regressor (MLPR), and KRR. These algorithms
were chosen for their strengths in regression tasks and their
ability to capture complex, nonlinear relationships, anticipated
to be beneficial given the structural diversity in MXenes.
Additionally, these models have been successfully applied in
pre;l}(;lzlss lMXene compounds and bandgap prediction stud-
les.” "

After optimizing the hyperparameters and training the
models using MXenes characterized solely by the elemental

https://doi.org/10.1021/acscatal.5c04191
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features, the models demonstrated the ability to predict the
target property, the PBEO bandgap, with MAE as low as 0.17
eV. The RFR model yielded the best results, as detailed in
Table S2 of the SI. The correlation plots between the predicted
and actual PBEO bandgaps, presented in Figure S2 of the SI,
indicate a reasonable agreement for the testing data, with a
correlation coefficient, R, of around 0.84 across all models,
with the exception of SVR with an R = 0.77. Despite having
reasonable MAE and R metrics, this approach shows significant
dispersion in the correlation plots and misclassifies many
metallic MXenes as semiconductors (cf. Figure S2 of the SI).
To improve the current predictions, the models were retrained
including DOS features, as aforementioned. This results in a
slight reduction in the MAE, down to 0.10 eV in the case of
RFR, along with improvements in the correlation coeflicient
across all models, with the dispersion and the number of cases
with errors exceeding 1 eV (N,,,) decreasing significantly, as
shown again in Table S2 and Figure S2 of the SI Notably,
ensemble forest-based models, that combine multiple decision
trees, such as RFR and GBR, outperform other methods,
including kernel-based approaches like KRR and SVR, as well
as neural network models like MLPR. The latter models still
exhibited substantial limitations, such as underestimating
bandgaps for high-bandgap cases and showing high dispersion
for metallic or low-bandgap MXenes, even predicting negative
bandgap values in some cases, leading to persistently poor
correlations. Therefore, the best-performing models so far are
GBR and REFR trained with DOS features (see RFR results in
Figure 3a).

3.2. Bandgap Derived from Band Edges Prediction.
The challenge in predicting the bandgap stems from the large
number of metallic systems that share the same target value,
despite variations in their input features. These cases of
degeneracy make it difficult for the model to learn a univocal
features-to-property map and, ultimately, to accurately predict
the bandgap across all MXene cases, which leads to some
metallic systems being misclassified as semiconductors. To
tackle this issue, separate models were developed to predict the
VBM and CBM at the PBEO level without vacuum corrections.
These models demonstrated strong predictive performance for
each separate band edge, particularly when trained with DOS
features, as shown in Table S3 and Figure S3 of the SI. Tree-
based models once again achieved the best results, with MAEs
of 0.16 and 0.18 eV for GBR and RFR, respectively, for both
VBM and CBM energy predictions, and R ranging between
0.98 and 0.99. The GBR results are shown in Figure 3b.
Nonetheless, when combining the predicted edges to calculate
the bandgap, E; = CBM — VBM, similar degeneracy problems
emerge; negative bandgap predictions are observed, and
metallic MXenes are misclassified as semiconductors. Con-
sequently, the overall accuracy and correlation metrics
remained comparable to those of the previous approach, as
illustrated in Figure S4 of the SIL

3.3. Combining Classification and Regression. To
mitigate the misclassification of metallic systems as semi-
conductors, we devised a two-step approach inspired by
previous approaches on inorganic solids.”" First, a classification
model is trained to differentiate between metallic and
semiconducting MXenes. Then, for MXenes identified as
semiconductors, a separate regression model —trained
exclusively on semiconducting MXenes— is employed to
estimate their bandgap values. This method aims to enhance
the accuracy of predicting semiconducting properties while

reducing misclassification of metallic systems. Again, different
classifier ML algorithms were studied, including gradient
boosting classifier (GBC), random forest classifier (RFC),
support vector classifier (SVC), multilayer perceptron classifier
(MLPC), and logistic regression (LR).

The evaluation of the classification models is summarized in
Table S4 of the SI, with the corresponding confusion matrices
and ROC curves presented in Figures SS and S6 of the SI,
respectively. For more information about the evaluation
metrics, we refer to Section S1 and Figure S1 of the SL
DOS-trained models continue to exhibit slightly better
performance compared to those using only elemental features.
However, at variance from the regression tasks, the difference
is marginal, and in some cases such as SVC, the performance is
slightly worse. It is worth noting that the models trained solely
on elemental features, while generally less accurate, offer the
computational advantage of not requiring DOS-based
descriptors, which rely on further calculations, making these
features more accessible for large-scale screening.

Tree-based models, once again, demonstrate superior
performance also in classification tasks, with accuracy of 91%
and 92%, precision of 91% and 86%, and area under the curve
(AUC) values of 0.97 and 0.9 for RFC and GBC, respectively.
All models exhibit strong precision in identifying metallic
MXene compounds. However, they encounter more challenges
in accurately predicting semiconducting cases, with some
semiconductors being misclassified as metallic. Among the
evaluated models, GBC stands out for its higher recall. This
metric, which quantifies the proportion of actual semi-
conductors correctly identified by the model, is especially
important in this context. A higher recall minimizes the risk of
prematurely discarding potential semiconducting MXenes that
may be valuable later for photocatalytic applications. By
ensuring that more semiconductors are retained in the
screening process, the recall allows for a broader exploration
of candidate materials. Once these materials are identified,
further calculations can refine the selection. This characteristic
makes GBC a better suited classification model for the present
goals.

For the subsequent regression step, the best-performing
model was the RFR, trained with DOS features, which
achieved an MAE of 0.24 eV and R of 0.92. The results for all
tested models are summarized in Table S5 and Figure S7 of the
SL Based on the previous analysis, the final pipeline integrates
the GBC classifier and the RFR regressor. Using this setup, a
MXene is first classified as metallic or semiconducting via
GBC, and for those predicted as semiconductors, the bandgap
is then estimated using the RFR. As shown in Figure 3, this
two-step approach significantly reduces the misclassification of
metallic and low-bandgap MXenes, resulting in more accurate
and less dispersed predictions, achieving an overall MAE of
0.17 eV and R of 0.95, being quite accurate and reliable for a
rapid screening. The learning curves in Figure S8 of the SI
further illustrate the performance of the regression model. As
expected, the error decreases with increasing training data,
indicating an improved model performance. The small but
consistent gap between the test and training errors suggests
that the model is generalized well without significant
overfitting. Additionally, the steady decline of the test error
implies that further improvements could be achieved with
larger data sets.

One concern with this model is that it still requires some
DFT calculations to obtain the PBE-level features. However,
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Figure 4. Feature importance derived with the RF algorithm. The top panel represent the importance values extracted from the RFC model, while
the bottom one using RFR. From left to right, the plots display the importance values from models trained with DOS features included, with only

elemental features, and with only periodic table features.

we note that the required PBE-level calculation and ML model
prediction are relatively inexpensive compared with PBEO
calculations. Based on our benchmarks from the La-MXenes
screening discussed later, the combined PBE structure
optimization and DOS calculation takes ~8 min on average
per structure using 24 CPUs, while the ML model prediction
itself (using the GBC + RFR approach) takes less than 1 s once
the PBE data is available. In contrast, a single PBE0 DOS
calculation can take ~5 h on average on the same hardware
(24 CPUs), and up to 12 h for more complex structures such
as n = 3 MXenes. This translates to a ~ X38 speedup when
using our ML approach compared to PBEO calculations.
With this in mind, the trade-off between model performance
and feature accessibility was further evaluated, investigating a
simplified version of the classifier-regressor pipeline using only
easily obtainable elemental features, those requiring per se
neither structural modeling nor DFT calculations. These
included periodic table-derived properties such as the atomic
number Z, group, period, electronegativity, electronic affinity,
van der Waals and atomic radii, plus MXene n index, stacking,
and hollow site. The classifier achieved an accuracy of 86%,
slightly smaller than that of the full-feature model of 92%.
However, its precision dropped to 70%, with a higher rate of
false positives. When combined with the regressor, the overall
model yielded a worse R coefficient of 0.80 and a less accurate

MAE of 0.30 eV compared to the full model of 0.17 eV. While
these results are notably less accurate and more dispersed than
those obtained with the full feature set, they still demonstrate a
decent predictive power given the minimal input requirements.

A comparison is made as well with respect the previous work
of Rajan et al. (ref 32), who also developed ML models for the
MZXene bandgap prediction. Such earlier ML models were
appealing since some did not rely on either PBE bandgaps or
DOS inputs, which reduced the computational need. As far as
the predictive performance is concerned, the classifier reached
a similar accuracy of 94% compared to the present 92%, and
the regressor had R/MAE of 0.91/0.11 eV vs the present 0.95/
0.17 eV. Still, a key distinction lies in the generality and scope
of the training data; Rajan et al. had the classifier and regressor
trained exclusively on n = 1 MXenes, with the regressor trained
with a limited data set of 70 systems, composed exclusively by
Sc- and Y-based MXenes, which explains the good perform-
ance, knowing that composition biases the results. In contrast,
our model was developed on a significantly broader and more
chemically diverse data set over 4000 MXenes, which offers a
solid basis for the generalizability and applicability of the
present ML model while still achieving comparable accuracy
metrics.

The nature of the random forest algorithm, for either the
classification or the regression, can provide the importance of
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classifier misclassifies, and the ones it predicts its metallic behavior correctly (the eight cases in purple of the confusion matrix). (d) Band alignment
diagrams relative to the H*/H, and H,0/0O, redox potential energy levels (dotted lines), for the six cases with correct band alignment identified
through the screening. The blue and orange bars indicate the VB and CB, respectively. For the Janus chalcogen-terminated MXenes, the band edge

position is represented for each surface (Hy or Hy).

the features used in the model. By aggregating the information
gained across all trees in the forest, the algorithm identifies
which features are most effective at separating the data or
predicting the bandgap. Here, we extracted the feature
importance with the RFC and RFR models, trained with
elemental features alone and also including DOS features, as
seen in Figure 4. Moreover, we considered a version trained
with only periodic table features. To classify the MXene into
metallic or semiconductor, the DOS bins near the Fermi
energy (where DOS;, is the bin at the Fermi level) exhibit the
highest importance, emphasizing their influence on electronic
and conducting properties, while the PBE bandgap also
significantly impacts predictions. When relying solely on
elemental features for classification and regression tasks,
structural factors, such as the MXene width, d, and interatomic
distances were more influential than elemental descriptors,
such as the termination electronic affinity, EA(T), and
electronegativity, EN(T), or the metal atomic number, Z,
and group.

When considering only periodic table features, the MXene n
index shows the highest importance in both the classification
and regression models, followed by the stacking and hollow
phases of the MXene. In the regression, when DOS features
were included, the PBE bandgap stood out as the most
significant feature, followed by DOS bins around the Fermi
level. This observation is consistent with expectations, as PBE
gaps are known to correlate strongly with PBEO gaps, as
demonstrated, for instance, in metal—organic frameworks,
exhibiting an R coefficient of 0.96,°* and also confirmed in
MXenes with our own data (see Figure S9 of the SI). This
analysis underscores the necessity of integrating computed
data, including PBE-derived values and DOS features,
alongside elemental properties, in order to enhance ML
model performance. While this strong correlation may suggest
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that a simple linear scaling could approximate a PBEO gap from
a PBE value, such approaches are limited to semiconducting
systems with nonzero PBE bandgaps (cf. Figure S9 of the SI).
‘When metallic cases are included, the correlation breaks down,
and scaling becomes unreliable. Furthermore, the relationship
is sensitive to structural and chemical variations, such as
surface terminations and layer numbers, making its general use
difficult. The present ML models tackle these limitations by
accurately classifying metallic vs. semiconducting cases and
refining predictions across a chemically diverse data set —
capabilities that cannot be reliably achieved using a single
scaling rule.

3.4. MXgap: A Python Package for MXene Bandgap
Prediction. Based on our trained models, an open-source
Python package, MXgap, was designed to streamline MXene
bandgap predictions. Featuring a user-friendly command-line
interface, the program processes output files from a VASP
calculation (primarily the final, optimized structure, plus the
DOS file), automatically extracting and parsing all the needed
features, employing the pretrained models to predict the
bandgap of a given MXene structure. By default, the tool
utilizes the best-performing model mentioned —a combina-
tion of a classifier and a regressor— but any of the discussed
models can be selected. The package is freely available on
GitHub and the Python Package Index (PyPI), where more
detailed documentation and examples are provided.

3.5. Screening La-Based MXenes. To demonstrate the
practical application of our models, we applied the optimized
GBC + RFR model to screen 396 novel La-based MXenes for
their bandgap properties, as depicted in Figure Sa, aiming to
identify new promising photocatalysts. La-MXenes were
selected because, among the already synthesized MXenes,
group IlI-based MXenes (containing Sc and Y) were already
known,”®>* and theoretical studies posed them as promising
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units, as a function of the photon energy, w, in eV, for the six found promising La-based

candidates for water splitting photocatalysis,”> making La a
promising candidate for further exploration. To evaluate the
position of these new La-based MXenes within the existing
chemical space, we employ the t-distributed stochastic
neighbor embedding (+-SNE) method. This dimensionality
reduction technique reveals that La-based MXenes form a
distinct cluster, separate from both the rest of the data set and
other group III MXenes; see Figure S10 of the SI. This
indicates that the model perceives these materials as genuinely
novel, making predictions more challenging due to the need for
extrapolation beyond the trained patterns. From the screened
structures, the model predicted 270 semiconductor cases, 73 of
which had E;, > 123 eV, which is a requisite for the
photocatalyzed water splitting process. Since we are consider-
ing six terminated structures for each MXene, we selected the
most stable one, reducing the number of optimal cases from 73
to 14. To validate the model, we selected 14 more random
cases and performed PBEOQ calculations to get their bandgap
and compared it to the ML prediction.

The classifier (see Figure Sb) presents an accuracy of 89%,
which demonstrates the strength of the model at discriminat-
ing metallic from semiconductor MXenes, even those of an
external data set. For the regression, the results, shown in
Figure Sc and Table S6 of the SI, present good agreement
between ML and PBEO bandgaps, with a MAE of 0.25 eV and
R = 0.91. These strong correlations are particularly noteworthy
given that they involve extrapolation, as highlighted by the
earlier t-SNE analysis. For lower bandgap values, there is a
higher variability in predictions compared to those with larger
ones, for which predictions tend to be more accurate. Two
clear cases stand out, La,CO, and La,CTe, where the
predicted bandgap is notably lower than the PBEO value. This
discrepancy can be attributed to their smaller PBE bandgap,
which, as previously observed, is identified by the model as a
significant feature. Consequently, this feature biases the
predicted bandgap, resulting in a lower-than-expected value.
Moreover, Te-terminated MXenes are predominantly metallic
or present a small bandgap, which can bias the predicted
bandgap results. We tested the program with alternative
models (GBC + KRR and GBC + GBR) to assess their
performance, as presented in Table S6 of the SI. While these
models exhibited slightly lower accuracy, they still captured the

main trends, with most predicted values remaining comparable,
though with a higher MAE.

For the 14 optimal cases from the screening mentioned
before, PBEO electronic structure calculations were carried out
to also gain their band alignment with respect to the water
splitting reaction. Finally, six MXenes —La,CT, (T = Cl, Br, |,
S, Se, Te)— presented a suitable band alignment, as shown in
Figure 5d (the remaining nonsuitable ones can be found in
Figure S11 of the SI). The resulting promising La-MXenes,
correlate well with other adequate group III based MXenes,
which present the same halide or chalcogen terminations.>
The S-, Se-, and Te-terminated MXenes adopt an ABC Hyx
structure, which renders them as Janus materials with distinct
band alignments on each face. For the La,CT, (T = Cl, Br, ],
Se, Te) cases, the overall water splitting photocatalysis seems
to be possible at pH = 0, while La,CS, and the Hy face of
La,CSe, are limited to photocatalyzing the HER process.
When increasing the pH to 7, the CBM of the halide-
terminated MXenes falls below the H"/H, reduction potential,
making them suitable only for photocatalyzing the OER. In
contrast, for the chalcogen-terminated systems, the increase in
pH is beneficial since it enables La,CSe, and La,CS, Hy face to
potentially perform the overall water splitting. It is important
to note that while our analysis incorporates the pH-dependent
shift of the water redox potentials, it does not consider possible
VBM and CBM position changes with pH and local interfacial
conditions.”®>” Therefore, while the computed band align-
ments provide a useful initial screening criterion, experimental
validation and more detailed interfacial modeling would be
advised to fully confirm the photocatalytic viability of the
proposed candidates.

An effective photocatalyst must be capable of absorbing a
substantial portion of either visible or UV light —the primary
components of solar radiation— and efficiently converting this
absorbed light into hole—electron photogenerated pairs, which
eventually separate and promote the photocatalytic process.
Here, we explored the light harvesting properties of this new
six promising MXenes by determining the optical absorption
coefficient (eq 1); see Figure 6. Most MXenes demonstrate
strong absorption in the visible spectrum, with their major
absorption peaks occurring within this region. An exception is
La,CS, where the first two prominent absorption peaks are
located in the IR and UV regions. Halogen-terminated
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Table 1. Parameters for the STH Efficiency Evaluation

Eope A¢ X,
L,CCl, 1.22 0 0.18
La,CBr, 115 0 0.03
La,CIL, 1.09 0 0.11
La,CS," 1.66 0.15 124
La,CSe, 1.94 0.30 1.40
La,CTe, 1.90 0.36 1.17

Xo, Neu Mabs NstH N$tH
0.62 752 62.1 46.7 46.7
0.66 79.3 54.9 43.5 43.5
0.44 814 53.4 434 434
0.08 53.1 26.3 13.4 13.0
0.23 39.3 27.2 10.7 10.2
0.38 412 36.4 15.0 14.1

“Results at pH = 7. E,, is the optical gap, A¢ is the difference between the vacuum energies at the two MXene surfaces for Janus cases, yy, and yo,

are the HER and OER overpotentials at pH = 0, respectively, all given in eV, and 77,5, .oy #stry and gy represent the efficiency of light absorption,
carrier utilization, STH, and corrected STH, respectively, given as a percentage.

MXenes exhibit their initial absorption peak in the IR region
but maintain significant absorption within the visible range.
Notably, La,CSe, and La,CTe, stand out by presenting their
first major absorption peaks directly in the visible spectrum.>

The upper limit of the STH efliciency has also been
estimated at pH = 0, with the results and the parameters
needed for its calculation listed in Table 1. It is observed how
the light absorption efficiency, 7,,, has a close relationship
with its bandgap, since a bandgap increase is accompanied by a
decrease in light absorption efficiency. The halide-terminated
MXenes exhibit the highest absorption efficiency and carrier
utilization efficiency, resulting in superior STH efficiencies,
ranging from 43—47%. On the contrary, chalcogen-terminated
MXenes, due to their larger optical gap, show lower absorption
and STH efficiencies, in the 6—14% range. This discrepancy
between halogen and chalcogen terminations is also observed
for Sc- and Y-based MXenes.” In summary, six new potential
photocatalysts have been discovered and further studied. The
application of this ML approach has significantly reduced the
number of hybrid functionals and advanced DFT calculations,
thereby accelerating the process of identifying promising
MXenes for water splitting photocatalysis.

4. CONCLUSIONS

This study contributes to the broader understanding of
MXenes as promising materials for various clean energy
applications by utilizing ML to predict their bandgap
properties. The bandgap is a key factor influencing the
material performance across a range of applications, including
photocatalysis, where we focused on. Using a comprehensive
data set of 4356 MXene structures, generated from a
computational screening grounded in hybrid DFT calculations,
we developed and validated multiple ML models. The best
approach consists of a classifier-regressor pipeline, achieving a
high classification accuracy of 92% for distinguishing metallic
from semiconducting MXenes and a low MAE of 0.17 eV for
bandgap prediction. Additionally, the inclusion of physically
interpretable descriptors in the ML models, combined with
feature importance analysis, provided valuable insights into the
key properties influencing the semiconducting behavior and
bandgap values of MXenes. The study highlights how
incorporating PBE-derived DOS information significantly
enhances prediction accuracy and underscores the greater
importance of structural parameters over elemental features
derived from the periodic table.

The trained models have been integrated into an open-
source Python package called MXgap, which, to the best of our
knowledge, is the first tool accessible to all users that utilizes
pretrained ML models for MXene bandgap predictions. While
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a few other studies have developed ML models for MXene
bandgap predictions, they do not offer such user-friendly tools,
which hinders new users from efficiently making quick and
accurate predictions. To validate the developed best model, we
applied it to screen 396 novel La-based MXene structures,
which led to six optimal candidates —La,CCl,, La,CBr,,
La,CI,, La,CS,, La,CSe,, and La,CTe,— which were
evaluated through advanced DFT methods. The results
highlighted their suitable band alignments and strong light
absorption properties in the visible region, with STH
efficiencies reaching 47% for halide-terminated structures.

This study not only paves the way for the identification of
promising MXenes for photocatalytic applications but also
establishes a methodology that can be extended to other
MXene bandgap-dependent properties and applications,
including photovoltaics and energy storage. Future efforts
could focus on expanding the data set to include more diverse
compositions and refining the ML models to increase their
accuracy.
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